Computer Science

2 AD-A285 210
g N

Integrating Human Factors with
Software Engineering Practices

William E. Hefley, Elizabeth A. Buie, Gene F. Lynch,
Michael J. Muller, Douglas G. Hoecker,
Jim Carter, J. Thomas Roth

29 July 1994
CMU-CS-94-175

LA

\ELECTE

. \’ | Cafrnegle [',""-%D_Tlc S

€D
=]
[ =]
o
-——h

C
C
7
—
=

o Distribution Unlimived




O

Integrating Human Factors with
Software Engineering Practices

William E. Hefley, Elizabeth A. Buie, Gene F. Lynch,
Michael J. Muller, Douglas G. Hoecker,
Jim Carter, J. Thomas Roth

29 July 1994
CMU-CS-94-175

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

To appear in the Proceedings of the 38th Annual Meeting of the
Human Factors and Ergonomics Society, Nashville, TN, October, 1994.

Also appears as Human-Computer Interaction Institute Technical Report
CMU-HCII-94-103

Abstract

Engineering processes and methodologies used in building tomorrow's systems must place a greater emphasis
on designing usable systems that meet the needs of the systems’ users and their tasks. This paper identifies
the need for defining human factors and human-computer interaction (HCI) engineering activities that
contribute to the design, development, and evaluation of usable and useful interactive systems, and presents a
rationale for integrating these activities with software engineering and incorporating them into the system life
cycle.

This work sponsored by the U.S. Department of Defense. The views and conclusions contained in this document are
those of the author(s) and should not be interpreted as representing the official policies, either expressed or implied, of the

.S. Government. 94- 3 1 62 1
LT




Keywords: design, software engineering, human factors, software process improvement,
user interface design, user interface software, human-computer interaction (HCT)




Integrating Human Factors With
Software Engineering Practices

William E. Hefley Elizabeth A. Buie Gene F. Lynch Michael J. Muller

Software Engineering Institute Computer Sciences Tektronix, Inc. U S WEST Technologies
Camegie Mellon University Corporation Beaverton, OR 97077 USA  Boulder, CO 80303 USA
Pittsburgh, PA 15213 USA Laurel, MD 20707 USA gene.lynch@tek.com michael @uswest.com
weh@sei.cmu.edu ebuie@csc.com
Douglas G. Hoecker Jim Carter J. Thomas Roth
Westinghouse Science & University of Saskatchewan Ergonomics and Safety
Technology Center Saskatoon STN OW0O CANADA Technology, Inc.
Pittsburgh, PA 15235 USA carter@skdad.usask.ca Pittsburgh, PA 15213 USA
hoecker@cognac.pgh.wec.com jtr001 @delphi.com

1. Introduction

The design and development of human-computer interaction (HCI) has been evolving
into a full engineering discipline for achieving system usability— develcping systems that
support their users in accomplishing their tasks with effectiveness, efficiency, and
satisfaction. Advances have been occurring both in user interface engineering (Curtis &
Hefley, 1994), focusing on the processes being used to develop artifacts, and in usability
engineering (Whiteside, Bennett & Holtzblatt, 1988; Nielsen, 1993), focusing on the
products being developed.

Large proportions of these systems are heavily software intensive. System engineering
activities must therefore integrate HCI engineering with software engineering to achieve
usability in software-intensive systems. This effort can take advantage of successful HCI
engineering efforts, which have focused on human factors and HCI methods (Dayton et al.,
1993).

Just as software engineering is becoming a discipline with a defined, managed process,
HCI engineering is continuing to evolve to a discipline having its own defined interface
development processes. These processes will be practiced by people from numerous fields
employing a rich collection of analytical, design, development, and evaluation techniques
to develop interactive systems that are effective, efficient, and satisfying. Successful HCI
engineering efforts often focus on human factors and human-computer interaction methods
that can improve the practice of software engineering.

How can HCI enhance current product development practices? As a step in integrating
HCI engineering with software engineering, this paper addresses questions of how HCI
engineering principles and practice can enhance current software engineering practice.

This paper describes the background and motivation for a seminar to be held as part of
the HFES94 Annual Meeting. This working session has two main objectives:

|




* Identify engineering methods and techniques appropriate to the HCI engineering
process model for interactive systems development

* Define the processes for using these techniques in the context of a system life cycle-a
process architecture that elaborates on how to specify, design, build, test, and evaluate
useful, usable, and satisfying interactive systems.

These efforts aim to propose HCI engineering processes for interactive, software-
intensive systems and to extend their understanding of these techniques, methods, and
processes to a broader community of researchers and practitioners. We hope that these
ideas may mature, spread, and begin to change the software and system engineering
practices.

2. State of the world
2.1 People

Who performs these types of tasks today? What skills do they have or need (Dayton,
1993)? Are they being brought in early enough as an integral part of the development
process (Whitehurst, 1993; Rousseau, Candy & Edmonds, 1993)? Developing interactive
systems requires the timely acquisition and application of new skills to comprehend, apply
and improve concepts in development processes, methods, and tools.

2.2 Processes

An important deficiency in the current state of practice is that many HCI design
methods are poorly defined. A common criticism of software engineering is also that its
processes have not yet reached the level of discipline and proceduralization that are evident
in other engineering disciplines. The processes used in developing large, complex systems
are often ad hoc, and not often defined and articulated in a manner that encourages
repetitive use and further refinement.

However, many of today's state-of-the-practice software engineering organizations are
assessing the maturity of the processes they use and are putting into place various forms of
continuous process improvement (also called Total Quality Management [TQM]) activities
to plan and carry out improvements to their existing software development processes
(Herbsleb & Zubrow, 1994). Such organizations are striving to make their software
processes understood, repeatable, defined, measured and subject to continual improvement.
They are addressing a vital need for process architectures that are usable by large numbers
of practitioners to produce high quality software systems.

Unfortunately not many of these efforts include state of the practice in HCI design in
the processes being improved. Nor do they use the evaluative methods for determining
usability as metrics for the success of their processes. They are improving process
(software and to a lesser extent product process), but it is a critically impaired or at least
structurally limited process due to its lack of consideration for HCI design and usability
issues. Developing high-quality interactive systems requires the appropriate integration of
HCI engineering with software engineering during the entire system life cycle.




3. Designing Tomorrow’s Interactive Systems
3.1 Desired Goal State

Not only must future systems support operability and learnability goals, they must also
be developed with an eye to concerns, such as affordability. Do our engineering processes
result in a system that people and organizations can afford to procure and operate? Can a
usable system be produced within the schedule and cost constraints that face us as
developers?

What goal should HCI engineering and software engineering adopt in this context?
They must aim to apply a coordinated engineering process for effectively, efficiently,
consistently, and humanely producing high-quality, defect-free products that fully satisfy
its users’ needs.

3.2 Software Process Improvement as a Model

Unfortunately, because of recurring problems and the immaturity of many
organizations, the major process emphasis in these organizations is typically on planning,
managing and controlling the progression of software development activities (Humphrey,
Kitson & Kasse, 1989; Kitson & Masters, 1992). Recently, however, the software
community have begun to pay widespread attention to ways of understanding and
improving software processes (Humphrey, 1989; Paulk, 1993a).

The Software Engineering Institute’s (SEI) Capability Maturity Model (CMM) (Paulk,
1993a; Paulk, 1993b) defines five maturity levels for software process and describes the
processes that typically are in place in organizations at each process maturity level. The
CMM provides specific guidance on the staging of activities in software process
improvement. This structuring of specific key process focus areas within maturity levels
helps organizations prioritize their improvement activities.

The notion that an organization is improving its software process maturity implies that
the organization is moving towards defining, applying and improving rigorous
development processes. Once a rigorous development process architecture is defined, its
can be used to guide development, provide a common basis for communication among
engineers and managers, and (perhaps most importantly) provide a basis for further process
improvement (Curtis & Hefley, 1992). The software process improvement approach can
provide a valuable model for organizations seeking to improve their HCI engineering
process.

3.3 Integrating HCI Engineering Processes with Defined
Software Engineering Processes

Until recently, the HCI community has placed primary emphasis on design. This
emphasis isn't bad—in fact, it's to be expected if HCI practice is at an ad hoc process
maturity level (CMM Level 1). Curtis and Hefley have argued (1992, 1994) that rigorous
HCI processes, methods, and techniques do exist.




Why try to define an engineering process, if we're really only at a Level 1 or ad hoc
stage of building interfaces? As discussed in greater detail below, there is a growing
importance of HCI concerns in today's applications. This growing importance, coupled
with the maturation of the discipline, present a timely opportunity to make improvements
in the system life cycle process and its outcomes by focusing on human factors and HCI
concerns.

Thus, if Level 3 is characterized by defined processes, we need to start making the HCI
engineering processes repeatable (CMM Level 2) and defined (CMM Level 3). We also
need to consider how to integrate these processes into a coherent engineering process. At
the same time, we need to start thinking about, and developing plans for, integrating those
HCI engineering processes with our defined software engineering processes.

For many HCI development efforts, necessary HCI engineering processes are often not
integrated with software engineering processes (Curtis and Hefley, 1992). However, HCI
development is beginning to adopt new approaches to system development such as user
centered system design (Norman & Draper, 1986), participatory design (Schuler &
Namioka, 1993; Muller & Kuhn, 1993; Greenbaum & Kyng, 1991), participatory
ergonomics (Noro & Imada, 1991), Scandinavian design (Bgdker, 1990; Floyd, 1989), and
cognitive modeling (Olson & Olson, 1990; Bosser & Melchior, 1992; Tauber, 1990),
which make the end user rather than the technology the focus of the design process. These
approaches, together with an increasing awareness of the need for process architectures that
integrate HCI and software development processes (Curtis & Hefley, 1994; Long, et. al,
1994; Lim, Long & Siicock, 1990; Browne, 1994; Hix & Hartson, 1993), signal the
emergence of process architectures that will be useful in developing usable interactive
systems.

4. Importance of HCI Concerns

The development of computer-based systems is changing. The changes, many of which
reflect a growing recognition of the importance of HCI concerns, include

* the predominance of HCl-related effort in the life cycle

* the expanding functionality of user interfaces—moving towards intelligent user
interfaces and integrated task environments

* the transition of HCI development from an arcane specialty into an established
engineering discipline.

4.1 Predominance of HCI

Almost half of the software in systems being developed today and thirty-seven to fifty
percent (depending on life-cycle phase) of the efforts throughout the life cycle (Myers &
Rosson, 1992) are related to the system’s user interface. A significant portion of the
resources and efforts in software development are dedicated to that portion of the systems
commonly referred to as the “user interface.” In fact, the user interface has become a core
system engineering issue separate from usability concerns (Curtis & Hefley, 1994).




Moreover, the key constraints on HCI development are evolving. An ever-widening
population of potential users continues to make ever-increasing demands for usability.
Formerly constrained almost exclusively by technology, HCI development is now driven
mainly by usability concerns and increasingly by concerns regarding operability (including
learnability).

4.2 Expanding HCI Functionality

The functionality and capabilities of user interfaces are also expanding—-moving, for
example, toward intelligent user interfaces (IUIs) (Hefley & Murray, 1994) and integrated
task environments (ITEs) (Hefley & Romo, 1994). Concepts such as critics (Mastaglio,
1990) and guides (Tuck & Olsen, 1990), rich research topics a few short years ago, are now
being incorporated in shrink-wrapped products.

This progression can be expected to continue. For example, addressing integrated task
environments (ITE) the United States Department of Defense (DoD) Software Technology
Strategy (Department of Defense, 1991) brings out the concept of intelligent adaptive user
interfaces (IAUT). This strategy addresses needs for intelligent adaptive user interfaces
(IAUI), safe user interfaces, user-tailorable interfaces, task model-based interfaces,
adaptive user interfaces, and intelligent user interfaces.

In all categories of products customers demand more for less. They want more
functionality for less money. They want more flexibility with less learning or execution
effort.

4.3 An Engineering Discipline for HCI

During the 1990s, HCI development will complete the transition from an engineering
specialty into an engineering discipline (Curtis % Hefley, 1994), and HCI professionals and
“drafted” engineers will find themselves becoming a more important part of the
development team. They will also find that this requires greater discipline in their work.
This discipline is not just technical, it also involves taking greater responsibility for serious
analytical activities that lead to a finished product.

Curtis and Hefley (1992, 1994) have argued that rigorous processes, methods and
techniques do exist for HCI development and that they constitute an engineering discipline.
Others (e.g., Morrison, 1993) have suggested that HCI cannot be an engineering discipline;
however, we believe this argument to be based on an overly narrow definition of
engineering. In recent years, other colleagues have also publicly taken a stance of moving
towards an engineering discipline (Dowell & Long, 1989; Dumas & Redish, 1993).

The processes used by system designers and developers are aimed at producing a high-
quality product—a product that enables the users to accomplish their tasks efficiently,
effectively, and comfortably. In a disciplined fashion, designers and developers must
address the intended:




y

« users and their characteristics, such as knowledge and skills

* users’ jobs and tasks, including task objectives, performance needs, and interpersonal
or group communication needs

* organizational & work environment

« quality of worklife and the quality of users’ experience
* technologies to support task performance

« information needed by users and their tasks

* interrelationships between the environment, users, tasks, technologies, and information
flows

HCI engineering, as a discipline, is uniquely able to contribute to addressing these
issues. In one recent analysis, the interaction times of similar functions, based on detailed
cognitive task analyses, were compared for two different proposed workstations. The cost
differential for a 0.8 second performance difference in each transaction spread across all
operators accounted for a potential savings of $2,400,000 per year (Gray, John, and
Atwood, 1992). Some organizations have already begun to define HCI engineering as an
important part of their system life cycle (Computer Sciences Corporation, 1990, 1994).

5. Envisioning A Future Discipline

While HCI engineering is continuing to evolve into a discipline having its own defined
interface development processes, promising advances along this evolutionary path are not
only found in an evolving discipline for designing usable, effective, and productive
systems with concern for usability at multiple levels—at the individual ergonomic level, at
the task and job level, at the interpersonal or group communication level, and at the
organizational/societal level—but also in defining ways of analyzing, design, and assessing
issues directly related to quality of worklife (QWL) (or the quality of life for non-
workplace applications) and the users’ quality of experience. Floyd (1987) foresaw this
paradigm shift in understanding software in its contexts of human learning, work, and
communication.

Key to successful system development are an increasing emphasis on defining
appropriate human factors and HCI design processes and an integration of these processes
with existing system and software development processes. It is easy to see the value of
these improvements when a second less in user execution time yields millions of dollars in
benefits (Gray, John, and Atwood, 1992); however, many efforts may not have this kind of
dramatic outcome. To enjoy the resulting benefits, we will have to take action to develop
comprehensive life cycle processes that are repeatable, defined, cost effective, measurable,
and traceable. A process that can be evaluated and then improved.

This paper is a call to action and an invitation to all who are responsible for product
development and see the need for integration of clearly defined processes that address a
range of analysis, design and evaluation functions to assist in developing a vision of future
practice that will encompass designing for usability (fit to person), utility (fit to the task
and organization), and QWL (fit with respect to social considerations regarding people,
groups, organizations, and society).




ACKNOWLEDGEMENTS
This work sponsored by the U.S. Department of Defense.

The views and conclusions contained in this document are those of the author(s) and
should not be interpreted as representing the official policies, either expressed or implied,
of the U.S. Government.

REFERENCES

Badker, S. (1990). Through the interface—A human activity approach to user interface
design. Hillsdale, NJ: Erlbaum.

Bésser, T. and Melchior, E.-M. (1992). The SANE Toolkit for Cognitive Modelling and
User-Centred Design. In Galer, M.; Harker, S.; & Ziegler, J. Methods and Tools in
User-Centred Design for Information Technology, 93-126. Amsterdam, Netherlands;
North-Holland.

Browne, D. (1994). STUDIO: STructured User-interface Design for Interaction
Optimisation. New York: Prentice Hall.

Computer Sciences Corporation (1990). Digital System Development Methodology
(DSDM®). Version 3.0, 1990. Falls Church, VA: CSC. [DSDM is a registered
trademark of Computer Sciences Corporation.]

Computer Sciences Corporation (1994). CSC Catalyst SM. Version 3, 1994. Falls Church,
VA: CSC. [Catalyst is a service mark of Computer Sciences Corporation. ]

Curtis, B. and Hefley B. (1992). Defining a Place for Interface Engineering. /EEE
Software, 84-86 (March, 1992).

Curtis, B. and Hefley, B. (1994). A WIMP No More: The Maturing of User Interface
Engineering. ACM interactions 1(1), 25-42 (January, 1994).

Dayton, T. et al. (1993). Skills Needed by User-Centered Design Practitioners in Real
Software Development Environments: Report on the CHI '92 Workshop. SIGCHI
Bulletin 25(3), 16-31.

Department of Defense. (1991). Department of Defense Software Technology Strategy
(Draft). Washington, D.C.: Director of Defense Research and Engineering (DDR&E).

Dowell, J. and Long, J. (1989). Towards a conception for an engineering discipline of
human factors. Ergonomics 32(11), 1513-1535.

Dumas, J.S. and Redish, J.C. (1993). A practical guide to usability testing. Norwood, NJ:
Ablex.

Floyd, C. (1987). Outline of a Paradigm Change in Software Engineering. In Bjerknes, G.,
Ehn, P., & Kyng, M. (eds.) Computers and democracy: a Scandinavian challenge, 191-
210. Aldershot, Hants, England: Avebury.

Floyd, C. et al. (1989). Out of Scandinavia: Alternative Approaches to Software Design
and System Development. Human-Computer Interaction 4(4), 253-350.

Gray, W.D., John, B.E., and Atwood, M.E. (1992). The Precis of Project Ernestine or An
Overview of a Validation of GOMS. Proceedings, CHI'92. New York: ACM, 307-312.




Greenbaum, J. and Kyng, M. (1991). Design at Work: Cooperative Design of Computer
Systems. Hillsdale, NJ: Frhaum.

Hefley, W. and Murray, ~. (1993). Intelligent User Interfaces. In Gray, W, Hefley, W, &
Murray, D. (Eds *, Proceedings of 1993 ACM/AAAI International Workshop on
Intelligent User Interfaces. New York: ACM.

Hefley, W. E. and Romo, J. (1994). New Concepts in Engineering Processes for
Developing Integrated Task Environments. Proceedings of the IEEE 1994 National
\erospace and Electronics Conference. —NAECON’94 (Dayton, OH, May 23-27,
1994), Vol. 2, pp. 680-687. New York: IEEE.

Herbsleb, J. and Zubrow, D. (1994). Software Process Improvement: An Analysis of
Assessment Data and Outcomes. 1994 Software Engineering Symposium. Pittsburgh,
PA: Software Engineering Institute, Carnegie Mellon University.

Hix, D. and Hartson, H. R. (1993). Developing User Interfaces. New York: Wiley.
Humphrey, W. S. (1989). Managing the Software Process. Reading, MA: Addison-Wesley.

Humphrey, W. S., Kitson, D. H,, and Kasse, T. C. (1989). The State of Software
Engineering Practice: A Preliminary Report. (Tech. Rpt. CMU/SEI-89-TR-1).
Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon Univ.

Kitson, D.H. and Masters, S. (1992). An Analysis of SEI Software Process Assessment

Results 1987-1991. (Tech. Rpt. CMU/SEI-92-TR-24). Pittsburgh, PA: Software
Engineering Institute, Carnegie Mellon University.

Lim, K. Y., Long, J. B., and Silcock, N. (1990). Integrating Human Factors with Structured
Analysis and Design Methods: An Enhanced Conception of the Extended Jackson
System Development Method. In Diaper, D., et al (eds.), Human-Computer Interaction
- INTERACT’90. Amsterdam: Elsevier, 225-230.

Long, J., Hakiel, S., Hefley, B., Damodoran, L., and Lim, K.Y. (1994). Guilty or Not
Guilty? Human Factors Structured Methods on Trial. Human Factors in Computing
Systems-CHI’'94 Conference Companion, 181-182. New York: ACM.

Mastaglio, T. W. (1990). User modelling in cooperative knowledge-based systems (CU-
CS-486-90). Boulder, CO: University of Colorado, Boulder. Dept. of Computer
Science. o

Morrison, P. (1993). Is There a Discipline of User Interface Design? Ergonomics in
Design, 23-28 (October, 1993).

Muller, M.J. and Kuhn, S. (Eds.) (June, 1993). Sepcial issue on Participatory Design.
Communications of the ACM 36(6).

Myers, B.& Rosson, M. (1992). Survey on User Interface Programming. Proceedings
CHI'92. New York: ACM, 195-202.

Nielsen, J. (1993). Usability Engineering. Boston: Academic Press.
Noro, K., and Imada, A.S. (1991). Participatory ergonomics. London: Taylor and Francis.

Norman, D.A., and Draper, S.W. (1986). User Centered System Design: New Perspectives
on Human-Computer Interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Olson, J., and Olson, G.M. (1990).The growth of cognitive modeling in human-computer
interaction since GOMS. Human-Computer Interaction 5(2-3), 221-65.




Paulk, M. C,, et. al. (1993a). Capability Maturity Model for Software, Version 1.1. (Tech.
Rpt. CMU/SEI-93-TR-24). Pittsburgh, PA: Software Engineering Institute, Carnegie
Mellon University.

Paulk, M. C., et. al., (1993b). Key Practices of the Capability Maturity Model, Version 1.1.
(Tech. Rpt. CMU/SEI-93-TR-25). Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Rousseau, N. P., Candy, L., and Edmonds, E. A. (1993). Influence, discretion, and time
available: a case study of HCI practice in software development. Interacting with
Computers 5(4), 397-411.

Schuler, D., and Namioka, A. (Eds.) (1993). Participatory design: Principles and
practices. Hillsdale, NJ: Erlbaum.

Tanber, M. (1990). ETAG: Extended Task Action Grammar - A Language for the
Description of the User’s Task Language. Human-Computer Interaction -
INTERACT’90. Amsterdam: Elsevier, 163-168.

Tuck, R., and Olsen, D. R. (1990). Help by Guided Tasks: Utilizing UIMS Knowledge.
CHI ‘90 Conference Proceedings, Seattle, WA, 1990, April 1 (pp. 71-8). New York:
ACM.

Whitehurst, H.O. (1993). Human Factors Contributions Early in System
Development. Ergonomics in Design, 17-22 (October, 1993).

Whiteside, J., Bennett, J., and Holtzblatt, K. (1988). Usability Eng_aeering: Our Experience
and Evolution. In Helander, M. (ed.), Handbook of Human-Computer Interaction, 791 -
817. Amsterdam: Elsevier.




